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Abstract
Exterior calculus and moving frames are used to describe the curved elasticity
of shells. The kinematics follow from the Lie derivative on forms whereas the
dynamics follow from stress forms.

PACS numbers: 46.70.De, 02.40.Hw

1. Introduction

Shell theory reduces the three-dimensional elasticity of a shell to an effective two-dimensional
theory of its middle section. This paper presents a new short derivation of the shell equations
of Kirchoff–Love based on the method of moving frames and exterior calculus.

Early shell theory dealt with church bells. Lord Rayleigh studied vibrating shells
motivated by the question whether or not a full musical scale could be played on bells
[1]. Vibrations of shells for aeroplanes and cars continue to be important in civil engineering.
There, the numerical modelling of shells remain an active area of research. Also computer
scientists have joined the efforts in order to present realistic computer graphics [2]. Lately,
shell theory has been applied to cell membranes [3] and even nanotubes [4].

There are several approaches to shell theory [5, 6]. Kraus presents a variational method
in [5]. Equivalently, assuming Newton’s second law for an infinitesimal volume element and
integrating over the thickness of the shell lead to the same results, see e.g. [6]. Unfortunately,
the calculations are complicated: the dynamic part of this well-known law involves a covariant
derivative of the stress tensor and requires intricate manipulations of Christoffel symbols for
the full shell, respectively its middle section. More mathematical treatments of shell theory
are found in [7–10].

However, a general observation is that complexities in tensor calculus can be avoided if
it is possible to work in an orthonormal frame, i.e. in the case of Riemannian manifolds. This
reduces the number of connection coefficients drastically and calculations become simpler
and more transparent. For example, Maxwell’s equations in electrodynamics and calculations
of curvature in general relativity become much simpler when using the exterior calculus of
differential forms and Cartan’s method of moving frames [11]. The latter also have applications
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in soft-condensed matter to lipid membranes in [12, 13]. Likewise, the present paper shows
how to apply exterior calculus to the continuum mechanics of shells.

1.1. Outline

The presentation centres around a proof of the shell equations of Kirchoff and Love [5]. These
simple equations were chosen to illustrate the underlying technique. Some familiarity with
differential forms and continuum mechanics is assumed. Section 2 introduces the geometry
via differential forms, section 3 treats the kinematics of shell deformation and section 4 the
equations of motion. A summary and some concluding remarks will be given in the last
section. For convenience, supplementary material has been collected in appendices.

2. Geometry

2.1. Geometry of the mid-section M

The shell equations must be covariant and therefore it is enough to validate them in one set of
coordinates. Hence, on the mid-section M we can choose lines of curvature coordinates α1

and α2 having axes aligned with the principal directions of curvature. Such coordinates can
always be chosen locally on a two-dimensional surface [14]. When the radii of curvature differ
R1 �= R2 the axes can be chosen uniquely. Otherwise, at an umbilic point R1 = R2 �= ∞ or
at a planar point R1 = R2 = ∞, we shall assume a choice made. Write in these coordinates
the mid-section metric in the Lamé form

ds2 = A2
1(dα1)2 + A2

2(dα2)2. (1)

Ai are called Lamé parameters. Instead of working directly with the coordinates α1 and α2

as done traditionally we shall work with a frame derived from these particular coordinates.
Thus, define an orthonormal frame on the mid-section via the forms

φa = Aa dαa. (2)

Then the metric of the mid-section, the first fundamental tensor, takes the simple form

a = gab dxa ⊗ dxb ≡ φ1 ⊗ φ1 + φ2 ⊗ φ2 ≡ δabφ
a ⊗ φb (3)

and the curvature tensor of the mid-section, the second fundamental tensor, becomes

d = dab dxa ⊗ dxb ≡ 1

R1
φ1 ⊗ φ1 +

1

R2
φ2 ⊗ φ2. (4)

The corresponding dual tangent vectors are

ẽb = 1

Ab

∂

∂αb
. (5)

2.2. Geometry of the shell S

Denote the coordinates on the three-dimensional shell S as α1, α2 and z. The latter coordinate
is perpendicular to the middle section of the shell, see figure 1. The direction of the z-axis
follows that of [5] but is opposite from e.g., [6, 15]. The thickness of the shell is called h. z =
±h/2 defines the upper respective the lower section of the shell. Likewise z = 0 corresponds
to the mid-section M. The shell metric is

ds2 = A2
1(1 + z/R1)

2(dα1)2 + A2
2(1 + z/R2)

2(dα2)2 + dz2. (6)



Moving frames applied to shell elasticity 5069
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A2d 2
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Figure 1. Middle section segment with curvature radii R1, R2 and increments A1 dα1, A2 dα2.

(This figure is in colour only in the electronic version)

The factors 1 + z/Ri are understood as follows: an increment on the middle surface in the
direction i spans the angle

dϕi = Ai dαi/Ri

so the increment at the elevated position is

dxi(z) = (Ri + z) dϕi = Ai(1 + z/Ri) dαi.

Finally, we shall assume the existence of derivatives of Ai, Rj .

2.2.1. Orthonormal frame of S. We introduce a three-dimensional frame as done for the
mid-section instead of working with the coordinates α1, α2 and z as in [5, 16] . Thus, from
(6) define an orthonormal basis of 1-forms as

Θ1 = A1(1 + z/R1) dα1, Θ2 = A2(1 + z/R2) dα2 and Θ3 = dz. (7)

From the 1-forms construct the volume element

dV = Θ1 ∧ Θ2 ∧ Θ3 = A1A2(1 + z/R1)(1 + z/R2) dα1 ∧ dα2 ∧ dz. (8)

The Hodge dual forms to the 1-forms are oriented area elements

dSa = �Θa (9)

and fulfil

Θa ∧ dSb = δa
b dV. (10)

In component form

dSi = εijkΘj ⊗ Θk (11)

with εijk being the totally antisymmetric tensor. Note, in the following we reserve εij for
another tensor, the strain, and hopefully no confusion will arise. As the area forms are not
closed d(dSi ) �= 0 they are not exact dSi �= d(1-form), and hence the notation of these area
forms is slightly misleading although conventional.

The dual tangent vectors are likewise written as

ea = 1

(1 + z/Ra)Aa

∂

∂αa
. (12)
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2.2.2. The connection of S. The 1-forms of the frame lead to the connection coefficients via
the condition of vanishing torsion [11]:

dΘi + ωi
j ∧ Θj = 0. (13)

Calculating dΘi from (7), the connection form ωi
j is found by inspection:

ω = (
ωi

j

) =




0 (A1(1+z/R1)),2Θ1−(A2(1+z/R2)),1Θ2

A1A2(1+z/R1)(1+z/R2)
Θ1

R1+z

−(A1(1+z/R1)),2Θ1+(A2(1+z/R2)),1Θ2

A1A2(1+z/R1)(1+z/R2)
0 Θ2

R2+z

− Θ1

R1+z
− Θ2

R2+z
0


, (14)

where derivatives are denoted with a comma ∂f/∂αi = f,i . The Gauss–Codazzi equations
discussed in appendix B allow us to simplify this result to

ω =




0 A1,2Θ1/(1+z/R1)−A2,1Θ2/(1+z/R2)

A1A2

Θ1

R1+z

−A1,2Θ1/(1+z/R1)+A2,1Θ2/(1+z/R2)

A1A2
0 Θ2

R2+z

− Θ1

R1+z
− Θ2

R2+z
0


 . (15)

2.2.3. Covariant derivative. Having defined the connection ω , the covariant derivative
acting on forms is

∇ = d + ω, (16)

where d is the flat exterior derivative and ω acts from the left with the wedge product. From the
condition of no torsion (13) follows that the covariant derivative vanishes on frame co-vectors
respective tangent vectors. The latter holds since the metric is covariantly constant. Thus

∇Θi = 0. (17)

To exploit this structure we shall consequently define quantities of interest as forms.

2.2.4. The derived connection of M. The mid-section M is embedded in the shell S:

i : M → S, (18)

so restricting differential forms to the mid-section is the pull-back

i∗ : �∗(S) → �∗(M). (19)

This restriction is obtained by putting z = 0. For instance,

i∗(Θa) = φa and i∗Θ3 = 0. (20)

Likewise, pulling back the connection of the three-dimensional shell ωi
j to the mid-section

i∗ gives the two-dimensional connection ω̃a
b of M. Namely,

dφa = −ωa
b|z=0 ∧ φb ≡ −ω̃a

b ∧ φb (21)

with a, b = 1, 2 only, where the ‘tilde’ shall be used in the following when referring to the
mid-section. Formally (21) holds since the exterior derivative commutes with the pull-back

di∗ = i∗d (22)

and

dφa = d(i∗Θa) = i∗dΘa = i∗
(−ωa

i ∧ Θi
) = −i∗

(
ωa

b

) ∧ φb. (23)
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Thus, all connection coefficients of the mid-section 	̃i
jk are contained in the single 1-form

ω̃1
2 = A1,2φ

1 − A2,1φ
2

A1A2
, (24)

where

ω̃a
b ≡ 	̃a

cbφ
c = −ω̃b

a . (25)

This corresponds to just two independent coefficients

	̃1
12 = A1,2

A1A2
and 	̃1

22 = − A2,1

A1A2
. (26)

Finally, these connection coefficients allow us to define the covariant derivative on the mid-
section, ∇̃.

3. Shell kinematics

First we discuss the displacement field U and next the appropriate deformation field, the strain
field ε.

3.1. The displacement field U

The displacement is a tangent vector field and hence contravariant. According to Kirchoff–
Love (see appendix A):

U = U 1e1 + U 2e2 + We3 ≡ (u1 + zβ1) e1 + (u2 + zβ2) e2 + we3 (27)

with ei given by (12). If β in (27) is sufficiently small its components play the role of
angles. Thus, when seen from the middle section the displacement at height z in the direction i
equals z dϕi ≈ zβi . However, in Kirchoff–Love’s theory, the rotations βi are not considered as
independent fields but can be found from ui and the gradient of w. This we show in section 3.3
using the assumption of vanishing normal strain εi3 = 0.

3.2. Strain field: connection to the Lie derivative

In linear elasticity the strain field ε is often introduced as the linearized variation of the metric
under a deformation [17]. This variation can be formulated strictly as the Lie derivative of
the metric [18]. Eventually, it gives the strain as the symmetrized part of the deformation
gradient. Thus,

ε = 1
2LU(g) = 1

2 (∇U + U∇). (28)

We recall this fact in appendix C.

3.3. Lie derivative gives variation of curvature

We wish to emphasize the connection of the strain in shells to the variation of the second
fundamental tensor. This is conveniently done via the Lie derivative instead of the symmetrized
gradient in (28).
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Expanding the shell metric. To find the strain with respect to the mid-section the full shell
metric (6) is written out in terms of simpler mid-section 1-forms

g = φ1 ⊗ φ1 + φ2 ⊗ φ2 + Θ3 ⊗ Θ3 + 2z

(
1

R1
φ1 ⊗ φ1 +

1

R2
φ2 ⊗ φ2

)

+ z2

(
1

R2
1

φ1 ⊗ φ1 +
1

R2
2

φ2 ⊗ φ2

)
≡ a + Θ3 ⊗ Θ3 + 2z d + z2d2 (29)

with d2
ab ≡ dacd

c
b . Deriving with the Lie derivative gives

ε ≡ 1
2LU(g)

= 1
2LU(a) + 1

2 (∇w ⊗ Θ3 + Θ3 ⊗ ∇w) + LU(zd) + 1
2LU(z2d2)

= 1
2LU(a) + wd + zLU(d) + zw d2 + 1

2 (∇w ⊗ Θ3 + Θ3 ⊗ ∇w) + O(z2). (30)

Above, the Lie derivative contracts the mid-section forms φa via the interior derivative ιU
according to Cartan’s formula for the Lie derivative on forms

LU(ω) = (dιU + ιU d)ω with ω ∈ �∗(S). (31)

Hence, it is advantageous to express the frame coordinates of the displacement field with
respect to the mid-section:

(ui + zβi)ei ≡ (ui + zβi)
1

(1 + z/Ri)Ai

∂

∂αi

= (ui + zβi)
(
δ

j

i − zd
j

i

) 1

Aj

∂

∂αj
+ O(z2)

≡ (
ui + z

(
βi − di

ju
j
))

ẽi + O(z2) ≡ (̃ui + zβ̃i)ẽi + O(z2) (32)

with

ũ = u (33)

β̃ = β − d · u. (34)

To proceed consider the first term in (30)
1
2LU(a) = 1

2Lu+zβ(a) = 1
2Lu(a) + 1

2Lzβ(a). (35)

The first term in (35) reduces to a membrane strain expressed in mid-section coordinates
1
2LU(a) = 1

2 (̃ua;b + ũb;a)φa ⊗ φb = 1
2 (∇̃ ⊗ u + u ⊗ ∇̃) (36)

with the corresponding covariant derivative. The second term in (35) gives a normal strain
plus a strain similar to (36) of order O(z):

1
2Lzβ(a) = 1

2 β̃a(dz ⊗ φb + φb ⊗ dz)δab + z 1
2 (∇̃ ⊗ β̃ + β̃ ⊗ ∇̃)

= 1
2 (Θ3 ⊗ β̃ + β̃ ⊗ Θ3) + z 1

2 (∇̃ ⊗ β̃ + β̃ ⊗ ∇̃). (37)

As ∂w
∂z

= 0 the normal strain ε33 vanishes in (30). So effectively

∇w = dw = dw(α1, α2) = ∇̃w. (38)

Then the requirement of vanishing normal shear strain εa3 = 0 with (30) and (37) reduces to

β̃ = −∇̃w + O(z). (39)
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An O(z)-correction is indicated, sinceLzβ(d) fromLU(d) produces such a term. In conclusion

ε ≡ ε(0) + zε(1) = 1
2 (∇̃ ⊗ u + u ⊗ ∇̃) + wd

− z
(

1
2 (∇̃ ⊗ ∇̃w + ∇̃w ⊗ ∇̃) − d2w − Lu(d)

)
+ O(z2)

= 1
2 (∇̃ ⊗ u + u ⊗ ∇̃) + wd

− z(∇̃ ⊗ ∇̃w − d2w − Lu(d)) + O(z2). (40)

This result agrees with that in [15] ( where d := −d ) when the Lie derivative in (40) is written
in full. Using [19] or performing similar calculations as in appendix C gives the standard
result

Lu(d) = (
dab;cuc + dc

aub;c + dc
bua;c

)
φa ⊗ φb (41)

with the covariant derivative corresponding to the mid-section. This Lie derivative now
measures the variation of the second fundamental tensor, the curvature tensor, with respect to
membrane fields. It represents the change of curvature when only stretching.

First versus second fundamental tensor. To summarize, the Lie derivative of the first
fundamental tensor aab produces parts of the leading in-plane strain ε(0), whereas on the
second fundamental tensor dab parts of the bending tensor ε(1). Various measures of variation
of the second fundamental tensor have been introduced and linearized in [6, 15]. The same
results are obtained here formally, where the Lie derivative eventually acts on the curvature
tensor in the expansion of the metric.

How unique is the bending tensor?. The discussion in this text considers the variation of
d = dabφ

a ⊗ φb under deformation. Since the Lie derivative does not commute with raising
and lowering indices, in fact LU(g) = 2ε, the various measurements of bending defined from
the variation of dab, d

b
a or dab differ with terms of the form ε · d, see [15]. For instance [6]

considers the variation of dc
b .

4. Shell dynamics

In this section, the stresses and moments in the shell are found. We follow [6] but use exterior
calculus instead.

4.1. Force conservation in the bulk

In continuum mechanics, forces acting on general surface elements dS are described in terms
of the stress tensor σ [17, 20]. Thus, the infinitesimal force on a surface element equals

df = dS · σ. (42)

In the bulk, the force per unit volume becomes

∇ · σ(U) + X = ρ
∂2

∂t2
U, (43)

where X is an external volume body force. In this section, we focus mainly on the left-hand
side of (43), that is, the dynamic part of the equations of motion.

In exterior calculus, however, it is convenient to collect the forces on an infinitesimal
element via the stress form [18]

fi = (dS · σ)i = σ 1idS1 + σ 2idS2 + σ 3idS3. (44)
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This form is a 2-form and when integrated over a surface it gives the corresponding force (here
in direction i, which by convention is put as the last index in σai). The total force is written as

f = fiei ≡ fi ⊗ ei . (45)

Its covariant derivative is simple

∇f = ∇fi ⊗ ei + fi ⊗ ∇ei = ∇fi ⊗ ei (46)

as the frame and its dual are constant and similar for X, ü. In differential form (43) reads for
the component i

∇fi + Xi dV = ρüidV. (47)

4.2. Covariant derivative of stress form

First we discuss tangential directions. Hence, make a split in tangential and normal (indices
a, b ∈ {1, 2} versus 3) in (47):

∇fa = ∇(σ 1adS1 + σ 2adS2 + σ 3adS3)

= ∂1(σ
1aA2(1 + z/R2)) dα1 ∧ dα2 ∧ dz + ∂2(σ

2aA1(1 + z/R1)) dα2 ∧ dz ∧ dα1

+ ∂3(σ
3a(1 + z/R1)(1 + z/R2)A1A2) dz ∧ dα1 ∧ dα2 + ωa

b ∧ fb + ωa
3 ∧ f3. (48)

Consider the first component a = 1. A simplification occurs in the last two terms of (48),
since e.g. ωa

3 = Θa/(Ra + z) restricts the relevant term in f3 to σa3dSa by (10). Likewise the
second last term has b = 2 by the antisymmetry of ω, where

ω1
2 = 1

A1A2

(
A1,2Θ1/(1 + z/R1) − A2,1Θ2/(1 + z/R2)

)
(49)

picks out corresponding terms of f2, that is σ 21 for the first term in (49) and σ 22 for the second.

4.3. Momentum conservation

The next step is to eliminate the degree of freedom in the direction perpendicular to the shell
by integrating (47) over the thickness coordinate,

∫ h/2
z=−h/2. From (48), a typical term has the

form of an integral of the stress tensor weighted with the curvature factors 1 +z/Ri . This leads
to the concept of stress resultants which we shall briefly pause to define.

4.3.1. Stress resultants. Consider the force per length with respect to an edge along the
middle section. For example, assume the edge is perpendicular to the first direction. That
force density equals

N1a ≡
∫ h/2
−h/2 dS1(z)σ

1a

A2 dα2
=

∫ h/2

−h/2
dz σ 1a(1 + z/R2). (50)

The notation is such that the first index denotes the direction to which the perpendicular edge
is considered. Thus, N1a is the force density along the edge 2. Likewise Q2 ≡ N23 is the
force density perpendicular to the shell in the z-direction along edge 1.
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Thus in general the force line densities are

Na = Naa

N1a =
∫ h/2

−h/2
dz σ 1a(1 + z/R2)

N2a =
∫ h/2

−h/2
dz σ 2a(1 + z/R1)

Q1 =
∫ h/2

−h/2
dz σ 13(1 + z/R2)

Q2 =
∫ h/2

−h/2
dz σ 23(1 + z/R1)

(51)

referred to as stress resultants. As mentioned, these arise in the thickness integration of (47).
Also corresponding moments are defined as

Ma = Maa

M1a =
∫ h/2

−h/2
dz σ 1az(1 + z/R2)

M2a =
∫ h/2

−h/2
dz σ 2az(1 + z/R1)

(52)

following the conventions of [5].
The resultants satisfy the constraint

N12 − N21 = 1

R2
M21 − 1

R1
M12. (53)

Equation (53) follows from the symmetry of the stress tensor

0 =
∫

dz(σ 12 − σ 21)(1 + z/R1)(1 + z/R2) = N12 +
1

R1
M12 − N21 − 1

R2
M21. (54)

We express the resultants as tensors on M as

Nab =
∫ h/2

−h/2
dz

(
δa
c + zďa

c

)
σ cb

Qa =
∫ h/2

−h/2
dz

(
δa
c + zďa

c

)
σ c3

Mab =
∫ h/2

−h/2
dz z

(
δa
c + zďa

c

)
σ cb

(55)

where a modified curvature tensor ď is introduced as

ď = 1

R2
φ1 ⊗ φ1 +

1

R1
φ2 ⊗ φ2 = (tr d)a − d. (56)

In (55) the tensor σab transforms as well as tensor on M under transformations of S leaving
z fixed. For other resultants, see [6]. The particular form of the resultants in terms of strains
is discussed in appendix D.
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4.3.2. Force balance for shell element. After having defined stress resultants, we continue
the example from section 4.2. When integrating over z and multiplying with A1A2 note that
Aa and Ra are independent of z. Also the symmetry σ21 = σ12 is used to get a term N12. The
integration over the ∂3(= ∂z)-term is evaluated at the boundary. Collecting terms proportional
to dα1 ∧ dα2 gives the first equation of motion:

∂1(A2N
1) + ∂2(A1N

21) + A1,2N
12 − A2,1N

2 + A1A2(Q
1/R1 + q1) = A1A2ρhü1 (57)

with the effective load

q1 = [σ 13(1 + z/R1)(1 + z/R2)]
h/2
z=−h/2 +

∫ h/2

−h/2
dz X1(1 + z/R1)(1 + z/R2). (58)

Similar calculations are done for the second component a = 2 in (48).

4.4. Moment conservation

The moment in the direction z ∧ ei is found by multiplying (47) with z. As before we consider
i = a = 1 and the derivation is very similar to the above and differs only in a partial integration
of the corresponding ∂3-term∫ h/2

−h/2
dzz∂3(σ

31(1 + z/R1)(1 + z/R2))A1A2dα1 ∧ dα2

=
(

[zσ 31(1 + z/R1)(1 + z/R2)]
h/2
z=−h/2 −

∫ h/2

−h/2
dz σ 31(1 + z/R2)

)
A1A2dα1 ∧ dα2

−
∫ h/2

−h/2
dz σ 31(1 + z/R2)z/R1A1A2 dα1 ∧ dα2 (59)

The last term cancels with∫ h/2

z=−h/2
zω1

3 ∧ f3 =
∫ h/2

z=−h/2
zω1

3 ∧ σ 31Θ2 ∧ dz.

The second term in the parenthesis in (59) gives the integral for Q1, whereas the boundary
term is grouped together with body moments as done above for the effective load qi .

4.5. Normal resultants

The final stress resultant involves the normal stress and is denoted by Qa . The calculation
can be done as in (57) and stated with derivatives of products of Lamé coefficients Ai and
resultants. These derivatives can be expanded and simplified using covariant derivatives of
the mid-section with the connection from (24).

However, this can also be seen at an earlier stage in the calculation by keeping the mid-
section frame {φ1, φ2, dz} and evaluating derivatives using (21). For simplicity, we show this
alternative approach for Qa but similar calculations can be done for the other resultants. The
covariant derivative becomes

∇f3 = df3 + ω3
a ∧ fa, (60)

where

df3 = d(σ 13Θ2 ∧ dz) + d(σ 23dz ∧ Θ1) + d(σ 33Θ1 ∧ Θ2)

= (∂1̂(σ
13(1 + z/R2)) + ∂2̂(σ

23(1 + z/R1)) + ∂3(σ
33(1 + z/R1)(1 + z/R2)))φ

1 ∧ φ2 ∧ dz

− (σ 13(1 + z/R2))ω̃
2
1 ∧ φ1 ∧ dz + (σ 23(1 + z/R1)) dz ∧ ω̃1

2 ∧ φ2

= [
∂1̂(σ

13(1 + z/R2)) + ∂2̂(σ
23(1 + z/R1)) + ∂3(σ

33(1 + z/R1)(1 + z/R2))

+ (σ 13(1 + z/R2))	̃
2
21 + (σ 23(1 + z/R1))	̃

1
12

]
φ1 ∧ φ2 ∧ dz (61)
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with the derivations ∂b̂ corresponding to those of the mid-section (5) and

ω3
a ∧ fa = − Θa

Ra + z
∧ σba dSb = − 1

Ra + z
σ baδab dV. (62)

Hence ∫
∇f3 = (

∂1̂Q
1 + 	̃1

12Q
2 + ∂2̂Q

2 + 	̃2
21Q

1 − dabN
ab

+ [σ 33(1 + z/R1)(1 + z/R2)]
h/2
z=−h/2

)
φ1 ∧ φ2

≡ [∇̃aQ
a − dabN

ab + q3]φ1 ∧ φ2, (63)

as 	̃i
j i ≡ ιẽj

ω̃i
i = 0 for all i, j (no summation) by the antisymmetry of the frame connection

coefficients. On the other hand, the kinematic body force equals∫ h/2

z=−h/2
ρü3dV ≡ ρhẅ φ1 ∧ φ2 + O(h3). (64)

Thus to leading order

∇̃aQ
a − dabN

ab + q3 = ρhẅ. (65)

4.6. Inertia terms

We comment on the kinematic part of (43): when the acceleration displacement field ü is
integrated over thickness only those terms constant in z survive leading to terms of the form
ρhüa as in (57) and (65). But for the moment equations, (47) is already multiplied with z and
only the acceleration of βi remains. This leads to terms

h3

12
A1A2ρβ̈i,

which go as the cube of thickness and are neglected in this treatment.

4.7. Dynamical equations of motion

In summary, using exterior calculus and moving frames one directly finds the shell equations
in classical form [5]:

∂1(A2N
1) + ∂2(A1N

21) + A1,2N
12 − A2,1N

2 + A1A2(Q
1/R1 + q1) = A1A2ρhü1

∂1(A2N
12) + ∂2(A1N

2) + A2,1N
21 − A1,2N

1 + A1A2(Q
2/R2 + q2) = A1A2ρhü2

∂1(A2Q
1) + ∂2(A1Q

2) − A1A2(N
1/R1 + N2/R2) + A1A2q

3 = A1A2ρhẅ

∂1(A2M
1) + ∂2(A1M

21) + A1,2M
12 − A2,1M

2 − A1A2(Q
1 − m1) = 0

∂1(A2M
12) + ∂2(A1M

2) + A2,1M
21 − A1,2M

1 − A1A2(Q
2 − m2) = 0.

(66)

However, having calculated the connection coefficients in (24) (26), the equations for the
resultants are easily rewritten in covariant form:

∇̃bN
ba + da

b Qb + qa = ρhüa

∇̃aQ
a − Nabdba + q3 = ρhẅ

∇̃bM
ba − Qa + ma = 0,

(67)

since in (66) in the equations for Nab and Mab all the first four terms come from a tangential
covariant derivative. Likewise for Qa as demonstrated explicitly in section 4.5.
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Eliminating the normal stress Qa and assuming no body forces and moments gives

∇̃bN
ba + da

b ∇̃cM
cb = ρhüa

∇̃a∇̃bM
ba − Nabdba = ρhẅ.

(68)

As these equations hold in lines of curvature coordinates and are covariant they are true in any
other coordinate system on the mid-section.

5. Summary and conclusion

The method of moving frames and exterior calculus allow a fast derivation of the equations of
motion for a curved elastic shell. First, the kinematic stretching and bending field correspond
to a particular strain tensor field obtained using the Lie derivative on the metric. Second, the
equations describing the dynamics are found using stress forms which are differential 2-forms
encoding the stress tensor in a convenient way. Finally, all equations are seen to be covariant
and hence valid in any coordinate system.
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Appendix A. Thin shell assumptions

The assumptions of Kirchoff and Love for a thin shell with vertical coordinate z and intrinsic
coordinates α1, α2 are as follows:

(i) thickness small compared to radii of curvature,
(ii) small displacements,

(iii) vanishing normal stress σ33 = 0,
(iv) preservation of normals εi3 = 0,
(v) linear dependence of membrane field Ui = ui(α1, α2, t) + zβi(α1, α2, t),

(vi) constant dependence of flexural field W = w(α1, α2, t).

Appendix B. Gauss–Codazzi

There exist constraints on the functions Ai and Ri in the metric (6) for defining a valid surface.
These equations come about by expressing the curvature via the connection. Even though
the shell is curved the metric (6) is just a metric for the flat three-dimensional space R

3.
Consequently, the curvature is zero:

0 = Ωi
j = dωi

j + ωi
k ∧ ωk

j . (B.1)

For instance for i = 1 and j = 3

dω1
3 = (A1/R1),2 dα2 ∧ dα1 (B.2)

and

ω1
2 ∧ ω2

3 = (A1(1 + z/R1)),2

R2 + z
dα1 ∧ dα2, (B.3)

so
(A1(1 + z/R1)),2

R2
=

(
A1

R1

)
,2

(1 + z/R2). (B.4)
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At the middle surface z = 0 the classical Codazzi equation is found

A1,2

R2
=

(
A1

R1

)
,2

. (B.5)

Applying (B.5) to (B.4) gives

(A1(1 + z/R1)),2 = A1,2(1 + z/R2) (B.6)

used in (15). Likewise other identities between A1, A2, R1 and R2 hold generalizing the
Gauss–Codazzi equations to the shell metric. By considering i = 1 and j = 2 the result of
Gauss follows: (

A1,2

A2

)
,2

+

(
A2,1

A1

)
,1

= −A1A2

R1R2
. (B.7)

Hence using (B.7), the total curvature K ≡ 1
R1R2

related to the embedding may be expressed
entirely in terms of the intrinsic functions Ai belonging to metric of the surface. This is the
lines of curvature coordinates version of Gauss’s theorema egregium [14].

Appendix C. Strain as Lie derivative

In linear elasticity the strain field is found from the displacement field by an application of a
Lie derivative on the metric [18]:

ε = εijΘi ⊗ Θj = 1
2LU(g) with g ≡ gij dxi ⊗ dxj = δjkΘj ⊗ Θk. (C.1)

The Lie derivative L is with respect to the physical displacement field U.
The strain field is calculated with respect to the orthonormal frame (7). As L is a

derivation:

L(Θj ⊗ Θk) = L(Θj ) ⊗ Θk + Θj ⊗ L(Θk), (C.2)

it suffices to investigate its action on a co-vector Θj . Using Cartan’s formula (31) for the Lie
derivative and (17):

LU(Θj ) ≡ (dιU + ιUd)Θj = dUj + ιU(dΘj ) = dUj − ιU
(
ωj

k ∧ Θk
)

= dUj + Ukωj
k − (

ιUωj
k

)
Θk = ∇Uj − (

ιUωj
k

)
Θk. (C.3)

The antisymmetry ωj
k = −ωk

j gives the familiar result from continuum mechanics:

ε = 1
2 (∇Uj ⊗ Θk + Θk ⊗ ∇Uj)gjk = 1

2 (∇ ⊗ ΘjUj + UjΘj ⊗ ∇) = 1
2 (∇U + U∇). (C.4)

In (C.4) the metric lowers the indices of the displacement field coordinates from a tangent
vector to a co-vector. Sometimes this is made explicit by writing U = U�.

Appendix D. Constitutive equations

Although all that we wanted to consider concerning moving frames and shells was presented
in the previous sections we mention for completeness one final subject, which is how to relate
the resultants with the displacements. Here a link between stress and strain is needed. These
are in the form of constitutive equations and can be thought of as a generalization of Hooke’s
law.
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D.1. Plane stress

In the analysis of plates and shell the so-called plane stress approximation is used [5, 6]. In
that approximation, the stress tensor has almost the same form as in bulk elasticity except
that the coefficients of elasticity are slightly altered. We refer the reader to [5, 6] for a full
discussion and just state the approximation in the case of isotropic materials

σab = Eν

1 − ν2
aab tr ε +

E

1 + ν
εab. (D.1)

Following the notation of [21] a 4-tensor is introduced

Habcd = 1 − ν

2

(
aacabd + aadabc

)
+ νaabacd (D.2)

such that

σab = E

1 − ν2
Habcdεcd . (D.3)

D.2. Stress resultants

We are now prepared to integrate (51) to get the resultants. Separate the stress tensor according
to the different orders in the expansion in z:

σab(i) = E

1 − ν2
Habcdε

(i)
cd (D.4)

for i = 0, 1 with ε(i) given by (40). Plain calculation from (55) and (D.1) gives the resultants
as

Nab = hσab(0) +
h3

12
ďa

c σ cb(1)

Mab = h3

12

(
σab(1) + ďa

c σ cb(0)
) (D.5)

using ď defined by (56). Or in terms of the plane stress tensor Habcd

Nab = CHabcf ε
(0)
cf + Bďa

c Hcbf eε
(1)
f e

Mab = B
(
Habcf ε

(1)
cf + ďa

c H cbf eε
(0)
f e

)
.

(D.6)

The constants C and B are the stretching and bending rigidities

C = Eh

1 − ν2
with B = Eh3

12(1 − ν2)
. (D.7)

In (D.5) the factors z/Ri from (55) are included leading to corrections proportional to
h3/Ri , see [5, 6]. If included relation (53) among the resultants is satisfied. Thus, some tensor
algebra on (D.5) shows

εabN
ab = −εabd

a
c Mcb. (D.8)

Therefore, the antisymmetric part of N equals that of d ·M and in lines of curvature coordinates
(D.8) has the form

N12 − N21 = 1

R2
M21 − 1

R1
M12 (D.9)

which coincides with (53).
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[2] Grinspun E, Hirani A N, Desbrun M and Schröder P 2003 Discrete shells Eurographics/SIGGRAPH Symp. on
Computer Animation ed D Breen and M Lin

[3] Sugawara M and Wada H 2001 Hear. Res. 160 63
[4] Yakobson B I, Brabec C J and Bernholc J 1996 Phys. Rev. Lett. 76 2511
[5] Kraus H 1967 Thin Elastic Shells (New York: Wiley)
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